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Introduction

Gene regulatory networks control the expression of genes for providing phenotypic 
traits in living organisms. They play a central role in cells and govern cell differentiation, 
metabolism, the cell cycle, and signal transduction [1]. Many computational models that 
aim at capturing essential structure and dynamics of networks have been developed to 
uncover underlying mechanisms of transcriptional networks in nature [2-7]. Generally, there 
are two types of network models developed for quantitatively or qualitatively analyzing 
the evolutionary dynamics of genetic networks [8,9]. The first type of models focuses on 
modelling a specific network or genetic pathway to quantitatively understand, for example, 
the segment polarity network in Drosophila [10] the oscillatory network in Escherichia coli. 
and the cell-cycle network in yeast [11]. These models typical use differential equations and 
require precise measurements of the concentrations or activities of gene products modelled 
through biochemical parameters, for example, binding affinities of transcription factors, 
dissociation constants of the receptors and ligands, or rate constants of enzymes kinetics [8].

However, the quantitative information of parameters used in those models is largely 
unknown, even for some well-studied experimental systems due to limitations of current 
biochemical techniques [9,12]. Specially, for many biological networks, we do not have a 
comprehensive understanding about each circuit in a network interact with whom. Even 
if such quantitative information is available, it has been difficult to precisely estimate or 
measure exact strengths of gene-gene interactions. Therefore, due to the lack of quantitative 
information in studying genetic networks, the second type of models have been used more 
broadly to discover general principles that emerge from dynamics of genetic networks [8,9]. A 
recent review of such models can be found in Spirov & Hol-loway [13]. These models typically 
use general and abstract representations, and, therefore, do not require measurements 
or estimates of biochemical information in nature systems. One of the most successful 
computational gene regulatory network (GRN) models was proposed and developed by 
Wagner [12,14].

The novel feature in Wagner’s GRN model is that it introduces the selection for phenotypic 
stability, performed as a separate layer of purifying selection in addition to the selection 
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In the mid of 1990s, Andreas Wagner proposed a gene regulatory network model where the self-
development process was explicitly modelled in the system. The many-to-one mapping mechanism of 
genotype to phenotype in Wagner’s GRN model enables genes to buffer against and even exploit likely 
variations in the genome. This mechanism is crucial for evolutionary innovations, because genotypes 
which control gene-gene interactions can change profoundly without affecting phenotypes which 
represent gene activities or expression concentrations. Wagner’s GRN model motivates research on 
the evolution of genetic networks and has been successfully employed to study many fundamental 
evolutionary and ecological questions. In this paper, I will review Wagner’s GRN model and currently 
available research papers that fall into its framework.
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for a particular or an optimal phenotype [15,16]. Because of this 
purifying selection1 imposed on the population, only individuals 
that can achieve developmental equilibrium are able to survive 
during the evolution. The central assumption is that an individual’s 
phenotype should be able to buffer against genotypic variations. In 
other words, the selection for phenotypic stability provides a viable 
simulation for the known natural phenomenon of an individual’s 
phenotype being expressed relatively stable while its genotype 
undergoes evolution.

Wagner’s GRN model, initially proposed to describe the 
evolutionary mechanism of gene duplication [12], has been 
employed as a popular in silico modelling approach to study 
epistasis, non-linear interactions between alleles at different loci, 
and complex genetic interactions for a broad range of fundamental 
research questions in evolution, ecology and systems biology, 
for example, gene duplication [14], genetic assimilation and 
robustness [4,12,17-28], recombination and sexual re-production 
[16,29-36], phenotypic plasticity [37-41], evolvability [15,42-44], 
network topology [45], sub-functionalisation [32], incompatibility 
[46], modularity [47,48], selection strength [49], developmental 
stability [50,51] and parental effects [52]. In this paper, I will first 

review the core implementation of Wagner’s GRN model. Then, I 
will future review currently available research papers that fall 
into the framework of Wagner’s GRN model, classifying them into 
several application areas2 in chronological order.

Wagner’s GRN Model 

The Wagner’s GRN Model was originally proposed by Wagner 
[12,14], and developed by Siegal & Bergman [28]. The model 
typically assumes that different or partially overlapping sets of 
transcription factors are expressed in different cells or different 
regions at any given stage of development of an organism [14].

Genotype 

In Wagner’s GRN model, the genotype is represented as a 
network which contains interactions among transcriptional genes. 
This interaction network encapsulates epigenetic features, such as 
protein-DNA-binding affinities and transcriptional activation or 
repression strengths [28,14]. Formally, for each individual network 
in a finite population M, N cis-regulatory transcription factors are 
encoded by N×N matrix W (see an example network with four 
genes in Figure 1. Each element wi,j (i, j = 1,2,…,N) represents the 
regulatory effect on the expression of gene i of the product of gene j.

 1Deleterious mutation that impairs the phenotypic stability of the network will be eliminated by the purifying selection.

 2Note that the reviewed papers are grouped by their main research focuses. This does not necessarily indicate that they are not 
relevant to other research topics.

Figure 1: An example of gene regulatory network. (A) Network representation of regulatory interactions among ve 
genes. Open and lled circles represent genes that are completely activation (+1) or repression (-1), respectively. The 
initial gene expression pattern is ( ) ( ) ( ) ( )

1 2 N
( , , )t  = ;  t t ts s s⋅ ⋅ ⋅s This example network is stable as it can reach an equilibrium 

pattern, which is s =(+1,+1,-1,+1,+1)
EQ by iterating Equation (1) using the sigmoidal mapping function with 100a = . (B) 

Interaction matrix (W) represents the network in (A). Each element in row i and column j, i.e., ( , 1, 2, ,5)ijw i j = ⋅⋅⋅
represents the regulatory effect on the expression of gene i of the product of gene j.

Note that the matrix W is appropriate to be considered as a 
‘genotype’ in the sense that it can be mapped to specific nucleotide 
sequences in the enhancer regions of the network genes [28]. The 
network connectivity parameter c determines the proportion of 
non-zero elements in the network W. A zero entry means there is 
no interaction between two genes. Through gene interactions, the 
regulatory effect acts on each gene expression pattern.

Phenotype 

In Wagner’s GRN model, the phenotype for a given network 
W is denoted by a state vector ( ) ( ) ( ) ( )

1 2 N
( , , )t  = ;  t t ts s s⋅ ⋅ ⋅s  where 

si(t) represents the expression level of gene (or concentrations of 
proteins) i at time t. Each value of expression state si(t) is within 
the interval [-1, +1] that expresses complete repression (-1) and 
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complete activation (+1). Note that for reasons of computational 
convenience, the expression level or the admissible concentration 
range for each si(t) can be normalized and restricted to the interval 
[0, 1]. Note that the model typically assumes that mRNA transcripts 
and their corresponding protein products are directly proportional 
in concentration. In other words, there is no post-transcriptional 
regulation, and, therefore, s(t) can be considered as either 
transcription or protein concentrations [28,12]. 

The initial phenotypic state s(0) is usually assigned random 
values from [-1, +1] (or [0, 1]), and is fixed throughout individual’s 
lifetime. This is because the model typically assumes that the initial 
state is a response to an extracellular signal, such as a growth 
factor or a specific composition of nutrients in the medium [14]. 
Therefore, it is assumed that the initial state is determined by the 
products of one or more ‘upstream’ genes that are not themselves 

part of the network and it is not regulated by any factors in the 
network. 

Developmental process 

In Wagner’s GRN model, it is typically assumed that the 
expression of transcription factor genes is only in one developmental 
stage and only in one set of cells (nuclei), for example, a set of 
nuclei in a part of a Drosophila blastoderm expressing a specific 
subset of gap genes and pair-rule genes [14]. The basic idea of 
the developmental process is that individual’s phenotypic state 
changes over time due to cross regulation and auto-regulation of the 
expression of member genes by their gene products [14] Figure 2. 
Formally, for a given gene regulatory network W, the dynamics of s 
for each gene i is modelled by a set of coupled difference equations:

( ) ,
1

1 ( )
N

i i j j i
j

s t f w s t
=

 
+ = +∈ 

 
∑  (1)

Figure 2: The developmental process in Wagner’s GRN model. Each gene phenotypic state at time 1, ( 1)it s t+ +  
( 1, 2,..., )i N=  (diamond boxes on the right), is regulated by the products of the other genes’ phenotypic state at time 
t ( )( 1, 2, , )js t j N= ⋅⋅⋅ via upstream enhancer factors (square boxes on the left) whose strength and direction of regulation 
are depicted as different colour saturation levels. The result of additive regulations is then normalised by a 
mapping function, such as a sigmoidal or a step function. The figure is a modified version of Siegal & Bergman 
[28].

where f(.) is a sigmoidal function, and εi is a constant which 
reflects either a basal transcription rate of gene i or inuences of 
upstream gene(s) on gene i. In all simulations, unless otherwise 
specified, I set εi=0 and follow specified, I set i=0 and follow Azevedo 
et al. [29].

Siegal & Bergman [28] to define ( ) 2 / (1 ) 1axf x e−= + − , where a is the 
activation constant determining the rate of change from complete 
repression to complete activation. From Figure 3, we can see that 
when a is large, for example, a=100, f(x) is similar as a step function 
where ( ) 1 0, ( ) 1 0f x FORx f x FORx= − < = + > 

( ) 1 0, ( ) 1 0f x FORx f x FORx= − < = + > and (0) 0f = . Therefore, it is 
earlier to produce extreme values (-1 or +1). The lower values of a, 
for example, a=1, allow intermediate expression states (Figure 3), 
but it is difficult to produce extreme phenotypic values. A detailed 
biological interpretation of the parameter a can be found in Palmer 
& Feldman [46] where authors summarized that in terms of a 

metaphorical ‘fitness landscape’, larger values of a correspond to 
broad-based, sloping hills that are peaked, rather than at, on top, 
whereas lower values correspond to narrow elevated areas with 
steep sides and a at top.

Mutation

Generally, there are two kinds of mutations that are usually 
modelled in the system. The first kind of mutations refers to changes 
in a given regulatory genotype, W. Specifically, such mutations can 
1) cause changes in the existing interactions (non-zero entries 
in W) by replacing their original interaction strengths with new 
values drawn from the standard normal distribution N(0, 1) (Figure 
4) form new interactions by setting new values drawn from N(0, 1) 
to zero entries in W or delete the existing interactions by setting 
their values to be topological mutation rate in. Here, I define the 
mutation rate in 1) as μ and define the topological mutation rate in 
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2) as topµ  (typically topµ µ>> ). In all simulations, unless otherwise 
specified, I do not allow any topological mutation, i.e., topµ  = 0, and 
the probability of individual network that acquire k mutations 
in its non-zero entries is drawn from the Poisson distribution 

( ) / !kP x k e kµµ −= =  2 0,1,.( )..,k c N= × . Note that the model does 
not consider mutations in sequences that code for gene products 
— mutations that simultaneously affect the interaction for a given 
gene product with all its target enhancer or promoter regions [28].

Figure 3: The sensitivity of parameter a on changing regulatory responses. At each time step during the 
developmental stage, the expression level of a gene is determined by a filtering function ( ) 2 / (1 ) 1axf x e−= + − , which 
normalises the sum of regulatory effects from other genes. The activation constant a determines the rate of the 
transition between expression states 1 and +1.

Figure 4:The operators of mutation and recombination in Wagner’s GRN model. Mutation only occurs in non-
zero entries in the genotype (see the red box). Recombination occurs by choosing two parental networks (blue 
and green genotypes) at random to from a transient diploid, which then segregates rows of the matrix to from a 
single, haploid o spring network.

The second kind of mutations refers to changes in the initial 
gene expression pattern, s(0). Such mutations have a nongenetic 
origin that could result, for example, from intracellular noise, from 
environmental fluctuations, or from disturbances in the activity 
of genes upstream of the circuit Espinosa-Soto et al. [19] But for 
reasons of computational convenience, I do not consider any non-
genetic mutation in all simulations.

Recombination

In the genotype W, because all entries in the ( 1, 2,...., )thi i N=  
row represent the promoter or enhancer regions of gene i, we 
can assume that the individual transcription factor binding sites 

on those regions are genetically closely linked to one another. 
Consequently, the recombination will occur only very rarely 
between them [24]. In contact, different genes in a regulatory 
circuit are often assumed to be unlinked to one another as they can 
occur on different chromosomes [32]. In Wagner’s GRN model, the 
recombination is modelled as a free recombination between circuit 
genes and neglect recombination within genes (promoters or 
enhancers) Figure 4. To be more specific, recombination occurs by 
randomly select two parental networks from the population pool to 
form a transient diploid. Then for each pair of rows i in the parental 
networks, one of two rows are chosen with an equal probability to 
form a single, haploid progeny [32].
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Stabilizing selection

In all simulations, network developmental stability is defined as 
the progression from an arbitrary initial expression state, s(0), to an 
equilibrium expression state (reaching a fixed phenotypic pattern),  

EQ

( )∞s by iterating Equation (1) a fixed number of times, dev T. If a 
given network W can achieve the stability over this developmental 
time period, it is termed stable, otherwise, it is labelled unstable. 
Note that this stabilizing selection also refers to as the purifying 
selection such that those unstable networks will be eliminated. The 
equilibrium expression state can be reached when the following 
equation is met:

41 ( ( ), ( )) 10
t

t
D s s t

θ τ

θ
τ

−

= −

≤∑  (2)

where 2( , ) ( - ' ) /41
ND s s s Nii i∑= =s . 4N measures the difference between 

the gene expression pattern s  and s , and s  is the average of the 
gene expression level over the time interval [ , 1, , ]t t tτ τ− − + ⋅⋅⋅

where τ  is a time-constant characteristic for the developmental 
process under consideration and will depend on biochemical 
parameters, such as the rate of transcription or the time necessary 
to export mRNA into the cytoplasm for translation [14].

Target selection

In Wagner’s GRN model, the target selection refers to the 
selection for a particular or an optimal phenotype. For networks 
that can achieve developmental stability (reaching an equilibrium 
state, 

EQ

s ), the phenotypic distance between the equilibrium 
state and the optimal state 

EQ OPT
( , )D s s , as defined in Equation (2), 

can be used to calculate individual’s fitness. Specifically, there are 
two measurements that are typically used in the model. The first 
exponential fitness evaluation function (Figure 5) is defined as in 
Siegal & Bergman [28], Wagner [14].

( , )
( ) exp EQ OPT

EQ

D
F

σ

 
 = − 
 

s s
s  (3)

Figure 5: Exponential selection curve for target phenotype. The normalised phenotypic distance x is defined as  

EQ OPT
( , )D s s (see Equation (3)). The fitness output was evaluated under different selection pressure: 𝜎=0.1 (strong 

selection strength), 𝜎=0.5, 𝜎=1, 𝜎=10 and 𝜎=100 (weak selection strength).

Figure 6: Multiplicative selection curve for target phenotype. The normalised phenotypic distance x is defined 
EQ OPT

( , )D s s as  (see Equation (4). The tness output was evaluated under different selection pressure: 𝜎=100 (strong 
selection strength), 𝜎=10, 𝜎=1, 𝜎=0.1 and 𝜎=0.01 (weak selection strength).
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where 𝜎 is the selection pressure that we impose on the population
during the evolution. 

OPT
s  is usually set to be ( )0s  . Unless otherwise 

specified, I assign zero fitness to individuals that cannot reach 
the developmental equilibrium. The second multiplicative fitness 
evaluation function (Figure 6) is defined as in Draghi & Wagner 
[42]: 

EQ

EQ OPT
( , )

1( )
(1 )

F
Dσ

=
+

s
s s  (4)

where 𝜎 ,
OPT

s  , and  are defined similarly as in Equation (3). Note 
that for some varia

EQ

s nts of Wagner’s GRN model, the ijw are set to 
be binary values: {0,1}ijw ∈  [43-45]. Then EQ OPT

( , )D s s can be simply 
calculated as number of equilibrium gene states that differ from the 
optimum.

Evolution process

The reproduction-mutation-selection life cycle is employed in 
the in-silico evolution. In typical asexual evolution, an individual 
is chosen at random to reproduce asexually by cloning itself, and 
then subject to mutation. Similarly, in typical sexual evolution, 
two individuals are chosen at random to reproduce sexually by 
recombining two genotypes, and then subject to mutation. Next, the 
resulting offspring network is exposed to the stabilising selection. 
Unless otherwise specified in certain evolutionary scenarios, if 
the offspring network cannot reach an equilibrium state, then it 
will be wiped out from the population immediately. For the stable 
offspring network, it is then exposed to the target selection, and 
can be selected into a new population pool for the next generation 
based on its fitness calculated by using Equation (3) or Equation 
(4). In each generation, this process is repeated until the number of 
M networks are produced. 

Applications 

Genetic assimilation & robustness 

In a classic experiment of Waddington [53], a phenotype 
of crossveinless wings appeared when Drosophila pupae of a 
wild Edinburgh strain were exposed to a temperature shock 
after puparium formation. Waddington then selected those 
offspring with crossveinless wings and further observed that 
the crossveinless phenotype continued to appear even when the 
temperature shock was no longer applied. He referred to this 
process as genetic assimilation whereby environmentally induced 
phenotypic variation becomes constitutively produced even if the 
environmental signal is absent [53,54]. Waddington [53] further 
envisioned a metaphor for the biological development in which 
cells, represented by balls, roll downhill through a high-dimensional 
epigenetic landscape, and described the concept of canalisation 
(also termed as robustness) as the deepening of valleys (pathways) 
down the slope, making the developmental outcome less sensitive 
to perturbations [53-56]. Since Waddington, a large number of 
studies have focused on uncovering underlying mechanisms by 
which canalisation can be achieved. However, how canalisation 
affects the distribution of molecular or genetic variations at 
different levels of genetic hierarchies or regulatory genes are still 
unclear [57].

Wagner [12] first employed his GRN model, which explicitly 
incorporates the self-development along with the evolutionary 

process, to investigate canalisation in the context of genetic 
networks and reported that the probability of mutations that cause 
changes in gene expression patterns can be substantially reduced. 
He referred to this phenomenon as epigenetic stability, that is, the 
system of epigenetic interactions may compensate or buffer some 
of changes that occur as mutations on its lowest levels. Wagner [12] 
also observed this increased epigenetic stability independently 
from experiments with variations in network architecture or other 
model parameters.

Siegal & Bergman [28] developed Wagner’s GRN model, and 
further showed that the selection for developmental stability 
is sufficient for canalisation. Specifically, Siegal and Bergman 
designed evolutionary scenarios where they measured the 
phenotypic distance of evolved populations in the face of mutation 
perturbations under different selection pressure for the optimal 
phenotype. They reported that networks can evolve greater 
insensitivity to mutation even without the directional selection 
for this property, that is, the selection for the optimal phenotype 
is largely absent. They concluded that genetic canalisation, the 
phenotypic insensitivity to mutation, is an emergent property of 
complex gene networks.

Masel [25] introduced external noise at individual’s 
developmental stage, and further reported that the selection for 
developmental stability is also sufficient for genetic assimilation. 
Specifically, the modelled noise served as environmental 
perturbations similarly to the temperature shock as described 
in the experiment of Waddington [53] can consequently affect 
the phenotype-genotype mapping. Masel then measured the 
phenotypic diversity in the presence of noise to access the evolution 
of genetic assimilation. In addition to the phenomenon observed by 
Siegal & Bergman [28], Masel concluded that the results support 
the utility of Waddington’s canalisation as an explanation for 
genetic assimilation.

Huerta-Sanchez & Durrett [20] re-examined previous work 
of Wagner [12] and Siegal & Bergman [28] and proposed a 
mathematical framework to investigate a simplified version of 
Wagner’s GRN model in more detail. Huerta-Sanchez and Durrett 
showed that the qualitative observation that systems evolve to be 
robust, is itself a robust conclusion, given that the population size 
is succulently large. They further explained that robust systems 
by definition of the model are insensitive to mutation and hence 
have a large mount of viable offspring. Therefore, the evolution of 
robustness is simply the selection for greater reproduction success.

Ciliberti et al. [8] studied how robustness varies in networks 
with different architectures. They showed that robustness to 
mutations and noise are positively correlated. Here the noise was 
modelled as perturbations to initial gene expression patterns, 
which is different from the noise introduced at the developmental 
stage as in Masel [25] Moreover, Ciliberti et al. [8] showed that 
highly robust networks can be reached from networks with lower 
robustness through gradual and neutral evolution in one large 
metagraph of network architectures. In a similar study [8], the 
same authors further concluded that the robustness emerged from 
the connected metagraph can simulate a long-term innovation in 
gene expression patterns. 
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Kimbrell & Holt [21] studied the canalisation in the source-sink 
evolution. Here the sink was modelled as a low-quality habitat where 
populations cannot persist without recurrent immigration from 
a source population, whereas the source was modelled as a high-
quality habitat. They showed that the probability of adaptation to 
the novel habitat decreases when canalisation increases. However, 
by introducing the noise to gene initial expression patterns as 
in Ciliberti et al. [8], Kimbrell and Holt found that the noise can 
facilitate adaptation to novel habitats.

Martin & Wagner [24] investigated how multinationality 
affects the network robustness to mutations and noise. The 
multinationality was modelled as different pairs of gene initial and 
equilibrium expression patterns. They showed that the number of 
network architectures decreases dramatically as the result of the 
increased additional functions that they are required to carry out. 
Giving that the relationship between the robustness of one function 
and that of other functions to mutations and noise is largely absent, 
Martin and Wagner concluded that the robustness trade-offs of 
multiple stable phenotypes generally do not arise in such systems.

Leclerc [23] argued that the common measurement for 
robustness as used previously in Wagner & Bergman [14,28] may 
not be appropriated as the measurement inadvertently discounts 
costs of network complexity. By taking costs of complexity into 
account, Leclerc showed that a higher robustness could be observed 
in sparsely connected networks with parsimonious architectures. 
Moreover, the author showed that selection will favor sparse 
networks if the network architecture is free to evolve.

Espinosa-Soto et al. [19] introduced non-genetic perturbations 
and studied the relationship between a phenotype’s mutational 
robustness and population’s potential to generate novel phenotypic 
variations. Here, the non-genetic perturbations referred to both 
perturbations from environmental factors such as temperatures, 
diets or biotic iterations as modelled in Masel [25] as well as 
perturbations from an organism’s internal factors such as activity 
changes in gene initial expression patterns as modelled in Ciliberti 
et al. [8] and Kimbrell & Holt [21]. Espinosa-Soto et al. [19] found 
that the phenotypic robustness facilitates variability in response to 
non-genetic perturbations, but not in response to mutations.

Le Cun & Pakdaman [22] reviewed previous work using 
Wagner’s GRN model, and derived new observations of emergent 
properties with respect to the robustness in the system. They 
showed that selection for a specific (target) phenotype also benefits 
to increase the probability of stabilizing alternative phenotypes 
revealed under stress. Le Cun & Pakdaman [22] further showed 
that a generalized canalisation in the system can drive population 
towards robustness in the presence of perturbations, for example, 
gene deletion, loss of 8 interactions and mutations in regulation 
activities.

Shin & MacCarthy [27] investigated how robustness and 
sensitivity become distributed in a host-parasite model of 
antagonistic co-evolution. Here parasites were modelled on species 
such as cuckoos where mimicry of the host phenotype confers a 

higher fitness to the parasite but a lower fitness to the host. They 
found that sensitivity sites are broadly distributed throughout the 
network and continually relocate. Shin & MacCarthy [27] referred 
to this phenomenon as ‘Whack-A-Mole’ inspired by a popular fun 
park game.

Espinosa-Soto [18] employed Wagner’s GRN model and 
investigated how selection for network stability affects the 
evolution of robustness. Espinosa-Soto showed that stabilizing 
selection on different phenotypic properties can increase 
mutational robustness.

 Runneburger & Le Rouzic [26] studied the conditions for 
canalisation to emerge in the context of Wagner’s GRN model. 
Runneburger & Le Rouzic [26] confirmed that most of parameters 
used in Wagner’s GRN model have a less effect on the evolution of 
genetic canalisation. They showed that the selection for phenotypic 
optima can have higher canalization levels than the selection for 
intermediate expression levels.

Recombination & sexual reproduction

 Recombination is ubiquitous in multicellular plants, 
animals and even fungi. But it is still unclear how evolutionary 
dynamics, such as sexual reproduction, contribute to the stability 
of inheritance. All sexual systems exhibit recombination, the 
reshuffling of parental genetic information which generates 
novel, heritable gene combinations [58-61]. However, sexual 
reproduction is also considered to be very costly since it may 
damage well-adapted lineages and produces fewer offspring. 
Consequently, why sexual reproduction can be maintained? For 
decades, researchers have made tremendous efforts and proposed 
numerous possible theories to explain and uncover the mystery of 
sex and recombination [34,58,61-64]. Two classic benefits of sex 
and recombination, though still controversial, are [33,60,65-68]: 
1) purging deleterious mutations more efficiently, and 2) creating 
novel gene combinations. However, although many observed 
phenomena, such as improving robustness and facilitating 
evolutionary adaptation, can be attributed to sexual reproduction, 
the underlying evolutionary mechanism is still poorly understood 
[34].

 Azevedo et al. [29] first employed Wagner’s GRN model to 
study the maintenance of sexual reproduction in the context of 
genetic networks. They showed that sexual populations can evolve 
a higher robustness than asexual populations. Moreover, they 
further observed that synergistic (negative) epistasis can evolve 
from sexual populations as a by-product of stabilizing selection 
imposed in the system, whereas antagonistic (positive) epistasis 
evolves from asexual populations. Azevedo et al. [29] concluded 
that sexual reproduction evolves genetic properties that favour its 
own maintenance.

MacCarthy & Bergman [32] pointed out that the study 
conducted by Azevedo et al. [29] may not explicitly examine whether 
sexual populations can outcompete asexual populations under 
the condition of synergistic epistasis. Specifically, they studied 
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conditions whereby asexual reproduction could nonetheless be 
favoured by allowing the spontaneous emergence of epistasis 
in the evolution and introducing a modifier locus that explicitly 
alters the recombination rate. They found that the fixation time of 
the asexual mode only has a significant correlation between the 
level of antagonistic epistasis, but not that of synergistic epistasis. 
MacCarthy & Bergman [32] highlighted the deterministic mutation 
hypothesis may not be a plausible explanation for the maintenance 
of sexual reproduction.

 Martin & Wagner [33] focused on effects of recombination in 
the context of genetic networks. They showed that recombination 
has much weaker effects than point mutations. Moreover, they 
demonstrated that recombination reduces the genetic load and also 
increases dramatically the genetic diversity. Finally, they observed 
that the effect of recombination can create particular cis-regulatory 
complexes that are able to mitigate deleterious recombination 
effects on regulatory circuits. Martin & Wagner [33] concluded 
that the effects of recombination may lead to many benefits, for 
example, increased genetic diversity and reduced genetic load, 
which are able to compensate for disadvantages caused by sexual 
reproduction.

 Lohaus et al. [31] complemented results presented in Azevedo 
et al. [29] and MacCarthy & Bergman [32] by studying long-term 
benefits of sexual reproduction. Similarly, to previous studies 
[29,32], they observed sexual populations can evolve a higher 
robustness and a lower genetic load than asexual populations at 
equilibrium. However, contrary to Azevedo et al. [29], they found 
no evidence that negative epistasis can contribute to long- and 
short-term benefits emerged from sexual populations. Moreover, 
they found that a lower deleterious mutation rate evolves from 
sexual populations cannot sufficiently account for the ability of 
sexual populations to resist invasion by asexual populations in 
a long-term. Lohaus et al. [31] argued that it is the continuously 
increased recombinational robustness that minimises the cost of 
sexual reproduction, and ultimately evolves resistance to asexual 
invasion in a long term. 

Wagner [34] broadly reviewed possible reasons of the low 
cost of recombination. He showed that 1) Recombination can 
cause greater genotypic changes than mutation,  2) recombination 
facilitates in creating new phenotypes  3) recombination is able to 
well preserve phenotypes in the context of genetic networks, 4) 
recombination can preserve protein structure and function and,  
5) recombinational robustness could be substantially increased 
during evolution. Wagner therefore concluded that recombination 
can create new phenotypes while disrupting well-adaptive 
phenotypes much less than mutation.

Le Cunff & Pakdaman [30] studied the relationship between 
individual-level evolutionary dynamics and population-level 
survival probability in the face of genetic and demographic 
stochasticity. Here genetic stochasticity refers to fluctuations in 
genetic composition (variability) while demographic stochasticity 

refers to fluctuations in population-level size. Different from 
previous studies which employed the Wagner GRN model with 
a fixed evolution space, the population size is not fixed in each 
generation and the extinction could happen due to genetic and 
demographic stochasticity modelled in the system. Le Cunff & 
Pakdaman [30] found that recombination rate, initial population 
size and mutation rates can all influence population survival 
probability. 

Whitlock et al. [36] investigated how Hill-Robertson 
interference affects the evolutionary origin and maintenance of sex 
in the context of populations with evolvable genetic architecture. 
Whitlock et al. [36] showed population size only contributes to the 
short-term advantage of sex. They further demonstrated that the 
deleterious mutation rate and recombination load are the two key 
properties of the genetic architecture that determine the long- and 
short-term advantages of sex. 

Whitlock et al. [35] built on previous work in [36] and studied 
how costly sex could be maintained. Whitlock et al. [36] explicitly 
included two costs of recombination and migration loads in the 
simulation model and showed that population structure promotes 
the evolution of costly sex. 

Plasticity and evolvability 

Evolvability is the capacity of a population to produce 
heritable phenotypic variation to rapidly adjust to certain types of 
environmental challenges or opportunities [69-72]. This capacity, 
documented in nature, reflects phenotypic plasticity enabled by the 
capacity of evolution to capture and represent regularities not only 
in extant environments but in the ways in which the environments 
tend to change [15,73,74]. The simplest form of evolvability is 
simply variation ________ the rate of evolution is determined by the 
amount of variations in a population [75,76]. More sophisticated 
evolvability can be achieved via hierarchical complex organizations, 
for example, genetic networks [77-82]. Many previous studies 
have focused on reconciling the antagonistic relationship between 
robustness3 and evolvability by showing that living system can 
sustain phenotypic stability while producing genetic variations 
that lead to evolutionary innovations [24,69,83,84]. However, 
the concept of evolvability is still controversial, and how genetic 
networks evolve and become evolvable remains an open question 
[69,79]. 

Bergman & Siegal [37] introduced gene ‘knock-out’ operation to 
Wagner’s GRN model and assessed phenotypic diversity before and 
after evolution. They showed that when a random gene is deleted by 
zeroing its corresponding row and column of the regulatory matrix 
in Wagner’s GRN model, environmental and ‘genetic’ canalisation 
can both break down, but consequently the `knock-out’ operation 
increases the rate of adaptation to new environments. Moreover, 
they further conducted knock-out experiments on yeasts and found 
that they exhibit variations in phenotype which well matches their 
model predictions. Bergman and Siegal highlighted their results 

 3Here robustness refers to the capacity to withstand mutations and maintain the phenotypic stability, function or structure.
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that complex genetic networks enable the evolutionary capacitor 
to buffer genotypic variations under normal conditions, while 
promoting the accumulation of hidden polymorphism that can 
facilitate new adaptations under stress. 

Borenstein & Krakauer [38] looked at micro- and macro-
evolutionary patterns by evolving genotype-phenotype map in 
genetic networks. They showed that many evolutionary patterns 
observed and identified from empirical studies can be attributed 
to epistatic interactions between genes in regulatory networks. 
Borenstein and Krakauer [38] highlighted that their findings 
support the view that development is an essential component in 
the production of endless forms, and it is also critical to constrain 
biotic diversity and evolutionary trajectories. 

Draghi & Wagner [42] studied whether natural selection 
facilitates the evolution of evolvability, particularly focusing on 
sexual populations. By introducing fluctuating environments 
(periodically changing optimal phenotypes), they demonstrated 
that natural selection facilitates the capacity of genetic networks 
to quickly adapt to new environments. This pattern was observed 
regardless of asexual or sexual reproduction modes, which suggests 
recombination does not suppress the evolution of evolvability. 
Draghi & Wagner [42] highlighted that the evolution of evolvability 
can be achieved by evolving complex genotype-phenotype map.

 Fierst [43] investigated conditions under which a network may 
produce a more evolvable phenotype. Specifically, they modified 
Wagner’s GRN model by introducing a sexually dimorphic trait 
which has an underlying pleiotropic architecture that can affect 
evolvability. They showed that sexually dimorphic characters not 
only increase mutational robustness but also substantially facilitate 
evolvability. When she looked more closely to the results, Fierst 
[43] further found that linkage disequilibrium within or between 
sex is accounted for different levels of evolvability between sexually 
dimorphic and monomorphic populations. 

Fierst [40] studied the effect of a history of phenotypic plasticity 
on adaptability to new environments. She found that populations 
with a history of phenotypic plasticity are able to adapt to new 
environments more rapidly than populations without a history of 
phenotypic plasticity, but the magnitude of the increased adaptation 
rate is dependent on the strength of selection in the original 
environments; ________ Weak selection generally facilitates phenotypic 
plasticity, and substantially increases adaptation rate. Fierst [40] 
suggested that the results predict that the relative invasive capacity 
of different traits could be assessed through phenotypic variance in 
the original environment.

Espinosa-Soto et al. [39] introduced non-genetic perturbations 
(changes in gene initial expression patterns) and explored 
whether conditions under which phenotypic plasticity facilitate 
adaptation can be fulfilled in the context of genetic networks. They 
showed that non-genetic perturbations, such as gene expression 
noise, environmental changes, or epigenetic modifications can 
substantially stimulate phenotypic plasticity and ultimately 
facilitate adaptation to new environments. Espinosa-Soto et al. [39] 
concluded that the phenotypic plasticity has an essential role in 

adaptive evolution. 

Pinho et al. [41] investigated how different levels of noise 
(changes in gene initial expression patterns as well as perturbations 
at the developmental stage) can affect the accessibility of 
phenotypic space that facilitates phenotypic diversity. They found 
that the increased levels of noise typically decrease accessibility 
to phenotypic space if the gene expression is binary but increase 
accessibility if there are more gene expression states. Pinho et 
al. [41] concluded that under specific conditions noise enables 
individuals to explore more phenotypic space.

Wilder & Stanley [44] compared the evolvability at the 
individual level with the evolvability at the population level, 
focusing on the potential of generating phenotypic variations. 
Specifically, by introducing the divergent selection, the selection for 
phenotypic variations, they showed that the divergent selection is 
able to produce evolvable populations and encourage phenotypic 
diversity, whereas evolvable individuals are more likely to be 
formed by the adaptive selection to fluctuating environments. 
Wilder & Stanley [44] hypothesized that non-adaptive mechanisms 
may be more important for shaping the emergence of evolvability. 

Other Applications 

The Wagner GRN model has also been employed to study the 
below research questions. Wagner [14] formally proposed a simple 
mathematical model to capture the key developmental process 
underlying transcriptional regulation and employed the proposed 
model to study the mechanism of gene duplication and its effect 
on phenotypic stability. He found that there is about 40%, at the 
highest, genes in a network are duplicated, depending on the 
fraction of genes that are duplicated in a single duplication event. 
Wagner [14] concluded that the evolution of gene networks should 
occur by gene duplications, and the most two favorable forms of 
genomic organization are tight linkage or strong dispersal. 

Siegal et al. [45] first employed Wagner’s GRN model to 
thoroughly study the relationship between network topology 
and its functional of evolutionary properties. They found that 
the degree distribution (scale-free, power law distribution) itself 
does not have a major effect on functional properties associated 
with nodes. Moreover, there is a weak or nearly none correlation 
between network connectivity and genetic variations.

MacCarthy & Bergman [85] employed Wagner’s GRN model 
to study the sub functionalization indicated by the theory of 
duplication-degeneration-complementation. They showed that, in 
contrast to the previous theory predictions, sub functionalization 
and neofunctionalization can coexist in biological networks 
following gene duplication. MacCarthy & Bergman [85] 
hypothesized that this pattern is facilitated by the evolutionary 
plasticity in combination with the phenotypic neutrality which is 
prevailing in biological systems. 

Sevim & Rikvold [51] studied the effect of the evolution of 
genetic robustness on the dynamical character of gene regulatory 
networks. Here the dynamical character refers to the phenotypic 
stability of genetic networks against perturbations, such as 
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mutations or noise. They showed that stabilizing selection only 
weakly affects the network dynamical properties, and the networks 
that are most robust to mutations and noise are highly chaotic. 
Sevim & Rikvold [51] argued that the damage propagation analysis 
does not provide much useful information about robustness to 
mutations or noise in the context of genetic networks. 

Palmer & Feldman [46] investigated the Bateson- Dobzhansky-
Muller incompatibilities and extended Orr’s model [86,87] to 
account for the complex dynamics of incompatibility in the context 
of genetic networks. They showed that depending on certain model 
parameters, under constant selection environment, three patterns 
of system dynamics can be observed: hybrid incompatibility 
between two allopatric populations may, 1) not increase at all, 2)
may increase to large values and, 3) a pair of populations may ̀ drift’ 
in and out of compatibility.

Espinosa-Soto & Wagner [48] investigated how modularity 
evolves in the context of genetic networks when the developmental 
process is explicitly modelled in the system. They showed that 
modularity is able to arise in genetic networks as a by-product of 
specialization in gene activity. They also demonstrated that new 
gene activity patterns that share existing patterns of gene activity 
are more likely favoured by the evolution of modularity. 

Rhone et al. [49] studied the impact of selection on genes at 
the phenotypic level in the context of regulatory networks. They 
showed that there is a positive relationship between the selection 
strength on the phenotype and the level of regulation between 
the loci. Moreover, they found that genes that strongly regulate 
other genes as well as those are less regulated by other genes are 
responding more profoundly to selection within the network. 

Pinho et al. [50] investigated how varying features and 
parameters of Wagner’s GRN model affect on network transition 
from oscillatory dynamics to developmental stability. They showed 
that the cyclic behaviour is mainly due to complex epistatic 
interactions between genes, but not due to connection strengths or 
patterns. Moreover, they showed that the stability distribution is 
highly robust to various model parameters and found that sparse 
networks are more likely to be stable.

Espinosa-Soto [47] studied how modularity evolves in gene 
regulatory networks. Espinosa-Soto [47] found that sparseness 
does not account for modularity in gene regulatory networks. 
However, the author argued that sparseness can enhance the 11 
selection for multiple gene activity patterns. 

Odorico et al. [52] investigated the influence of parental effects 
in the context of gene regulatory networks. Odorico et al. [52] 
demonstrated that adaptation and robustness can be enhanced for 
fast-developing individuals with when they were evolved under 
nongenetic inheritance.

Discussion & Future Work

The Wagner GRN model has been extensively used to explore 
many fundamental research questions in evolutionary biology 

and ecology. But only a few studies focus on the analysis of the 
system per se. In particular, due to the non-linear mapping from 
the regulatory response to the output phenotype at each time step 
during the self-developmental stage, it has been hard to determine 
whether the network is able to reach an equilibrium phenotypic 
state, or, if it could, what its equilibrium state would be. This is 
critical to many research questions. For example, the robustness 
assessed in most studies is to examine if the network remains stable 
when it is subject to certain perturbations. For research work on 
evolvability, researchers focus on studying whether the individual 
network can generate novel and inheritable phenotypes in the face 
of, for example, fluctuating environments. In most current studies, 
the equilibrium phenotypic state is examined or calculated through 
iterating the difference equations within certain time steps. This 
is, however, an extremely time-consuming solution, especially for 
evolving a large-size population for a very long evolution time. 
Since the self-developmental process can greatly slow down the 
simulation, it is worth exploring how to efficiently calculate or 
estimate the equilibrium phenotypic state analytically. In the 
meanwhile, the high-performance computing techniques need to 
be employed to further speed up the simulation process.

The currently available studies have implemented many 
different types of mutation or noise. For example, on the one hand, 
mutations happen in the genotype where they can change existing 
regulations by altering non-zero entries or change the network 
topology by creating new regulations in zero entries or deleting 
existing regulations from non-zero entries. The mutation can also 
occur in individual’s initial expression state and consequence alter 
its equilibrium state. The noise, on the other hand, is normally 
modelled at each time step during the self-development stage. 
However, to my best knowledge, the recombination operator has 
not yet been thoroughly explored. Most studies follow the ‘free 
recombination’ strategy. But we know that the offspring may 
not inherit an equal information from its parents, and there are 
many different mating strategies in nature. By implementing 
different recombination operators, we may be able to gain a 
better understanding of the origin and maintenance of sex and 
recombination for different species in nature. For example, by 
differentiating males and females in sexual lineages, we may be 
able to rigorously examine the role of sexual selection. We could 
also implement different features, such as different mutation rate, 
for males and females together with varying mating strategies to 
test if that would affect the underlying evolutionary dynamics.

Most of the current studies also have strictly required that 
each individual in the population is capable of achieving the 
developmental equilibrium. In other words, networks with 
oscillating phenotypic states will be wiped out immediately from 
the population. However, although this requirement is a reasonable 
biological assumption, it largely impedes alternative pathway 
evolution through, for example, compensatory mutations. In fact, 
many empirical studies have indicated that the fluctuating selection 
regime (periods of purifying selection) is also biologically realistic. 
In fact, networks that have re-gained the developmental stability 
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may have very different properties compared with networks that 
have never been comprised. Those properties are expected to affect 
the underlying evolutionary dynamics. which have been largely 
overlooked in the current studies. Therefore, the future studies 
are encouraged to consider including those networks that have 
been through compensation in the simulation, and examine, if any, 
different evolutionary consequences. 

However, if we would allow compromised networks to stay in 
the population for a while, then the problem would be, for example, 
how to calculate its fitness. The fitness evaluation functions used 
in current studies measure the phenotypic distance between 
the individual’s equilibrium state and a given target state. But if 
the individual is not able to achieve the developmental stability, 
then we cannot calculate individual fitness because there is no 
equilibrium state. In some studies, instead, the average expression 
state was used to calculate fitness for networks with oscillating 
phenotypic states. This is, however, a temporary expedient. In fact, 
the fitness evaluation should consider both individual’s ability to 
reach the developmental equilibrium and its distance away from 
the target. This is also biologically realistic as in many biological 
organizations. For example, in proteins, there is a balance between 
stability and function. Therefore, the future work is expected to 
take both network stability and its function into consideration 
when evaluating individual’s fitness.

The Wagner GRN model also has a great potential to be used 
to solve optimization problems in machine learning field since the 
model can converge to the target phenotype. It has been found that 
Darwinian process of mutation, recombination and selection are 
useful to study complex adaptations in evolutionary computation, 
a subfield of artificial intelligence [13,72,88]. Many computational 
evolutionary algorithms have been used to solve real-world 
engineering optimization problems [15,87,89]. For example, 
genetic algorithms (GAs) are methods well-suited for search and 
optimization in non-linear and high-dimensional problems Holland 
[90]. Convergence to near-optimal solutions is often perceived as 
the goal for GAs. Since the goal of Wagner’s GRN model is to find 
an optimal (target) phenotype, therefore it is possible to develop 
a similar system for discovering highly-evolvable genomes by 
exploiting genetic networks [91,92]. The many-to-one mapping 
mechanism of genotype to phenotype explicitly modelled in 
Wagner’s GRN model enables genes to buffer against and even 
exploit likely variations in the genome. In addition, such a dual 
learning system — coupled plasticity — is known to accelerate 
evolution in the right contexts [93,94].

Hinton & Nowlan [93] focused on the interaction between 
evolution and learning, showing that coupled plasticity can solve 
a problem that is extremely difficult for an evolutionary process 
on its own. Especially, the genotype used in Wagner’s GRN can be 
regarded as the hierarchical structures that control the network 
output (phenotype), i.e., represented as a possible solution to the 
problem [95]. Therefore, the aim is to explore how the robustness 
of genetic networks can improve the evolvability of evolutionary 
computation methods by exploiting genotypes for learning 
structure required for quick adaptations to environmental changes. 

Some preliminary results are presented in Wang et al. [15].

 As George E. P. Box said, “Essentially, all models are wrong, but 
some are useful.” The model developed under Wagner’s framework 
makes no attempt to fully cover biochemical processes of the 
underlying transcriptional regulation in real biological systems 
[96]. Instead, the abstraction of regulatory systems, as well as the 
self-developmental process, are explicitly modelled and emphasized 
[97]. The conclusions drawn from research using such an abstract 
model aim at providing useful high-level explanations or perditions 
for general patterns or properties that we would observe in natural 
systems [98].
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