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Introduction
Due to the tightness of shale formations, production from these formations is dominantly 

a function of the contact between the horizontal well and the formation. Several clusters of 
hydraulic fractures and natural fracture networks are the main contributors to the contact 
between the well and the shale play. Since the natural fracture networks cannot be physically 
modeled due to their complexity and lack of measurement, physics-based modeling of Frac-
Hits, a function of natural fracture networks, is also almost impossible. During the hydraulic 
fracturing of a child well, the extension of natural fracture networks that have been opened 
by the induced fractures can connect with the networks of natural fractures of the parent 
well. When the natural fracture networks of the hydraulic fracturing well known as child well 
communicate with the natural fracture networks existing well, parent well, Frac-Hit occurs. 
When Frac-Hit happens, the slick water injected in the child well will move through the 
connected networks of fractures and will be produced from the parent well. 

This increase in water production is usually accompanied by a reduction in hydrocarbon 
production in the parent well, negatively affecting the operator’s cash flow. Figure 1 shows 
the impact of Frac-Hit on the fluid production of a parent well where production of gas 
and condensate has dropped drastically in mid-2015 after Frac-Hit while water production 
has increased significantly located in southern Pennsylvania from Marcellus shales [6]. 
As the number of wells in a shale asset increases, reducing the spacing between wells and 
stacking wells in multiple layers as a common practice result in more interference between 
child and parent well known as Frac-Hit. Traditional approaches fail to predict, manage 
and mitigate Frac-Hit. The objective is modifying the traditional approaches by leveraging 
AI&ML techniques and replacing the assumptions currently used with a large amount of field 
measurements.

Crimson Publishers
Wings to the Research

Review Article

*Corresponding author: Shahab D Mo-
haghegh, West Virginia University, Mehrdad 
Zamirian, USA

Submission:  August 10, 2023
Published:  August 24, 2023

Volume 5 - Issue 4

How to cite this article: Shahab D 
Mohaghegh*. Case Study: Frac-Hit 
Occurrence Prediction Using AI & ML. 
Progress Petrochem Sci. 5(4). PPS. 
000620. 2023. 
DOI: 10.31031/PPS.2023.05.000620

Copyright@ Shahab D Mohaghegh, This 
article is distributed under the terms of 
the Creative Commons Attribution 4.0 
International License, which permits 
unrestricted use and redistribution 
provided that the original author and 
source are credited.

ISSN: 2637-8035

548Progress in Petrochemical Science

Abstract
Frac-hit is defined as the communication between an existing horizontal parent well and hydraulic 
fracturing treatment of the new well called child well. When a parent well is “hit”, it can be very 
problematic both operationally and economically depending on the severity of the hit. In industry, 
frac-hit is considered dominantly a function of well spacing and subsequently as the number of wells 
in a given shale asset increases, probability of interference between parent and child wells increases 
significantly. However, by increasing the distance between the wells, the recovery of hydrocarbon from 
the shale asset reduces. Common techniques like Rate Transient Analysis (RTA) and Numerical Reservoir 
Simulation, inherited techniques from conventional reservoirs, have proven to be unrealistic due to their 
degree of assumptions and simplifications during modeling and evaluation of unconventional resources 
[1-5]. In this case-study, AI/ML techniques, which is a pure data-driven, fact-based method without any 
assumptions, simplifications, and interpretations, is used to predict and mitigate the frac-hit occurrence 
more accurate than common practices in industry.
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Figure 1: Impact of Frac-Hit on the production of the parent well, south PA [6].

In this article, two approaches of Frac-Hit prediction, mitigation 
and management are presented and one is discussed in detail:

a)	 Snapshot Modeling of Frac-Hit: Uses snapshots of the 
shale well dynamic behaviors to identify Frac-Hit, which is the 
focus of this article.

b)	 Dynamic Shale Analytics: Built on the top of Top-Down 
modeling technique and would be able to predict, manage and 
mitigate Frac-Hit through comprehensive dynamic profiles of 
all the shale assets [3].

The first AI/ML based approach, Snapshot Modeling of Frac-
Hit, uses a snapshot in time of the dynamic behavior of the wells. 
This technique developed based on the work of a former graduate 

student at West Virginia University, Mr. Ryan Tyree, identifies two 
key parameters: First the contributing characteristics of reservoir, 
hydraulic fracturing and completion that cause the Frac-Hit. Second, 
predicting whether Frac-Hit will occur on the parent well during 
completion of the child well at stage level. The second AI/ML based 
approach, Dynamic Shale Analytics, uses a single model to history 
match the entire production profile of every single well in the asset, 
un-contrary of RTA or LSTM models that history match a single well. 
Moreover, the Dynamic Shale Analytics model incorporates several 
parameters in categories of construction and trajectory, hydraulic 
fracturing design, operational constraints and production history 
and unlike numerical reservoir simulation; the model simulates the 
combination of reservoir and the wellbore.

Snapshot Modeling of Frac-Hit (Shale Analytics)

Figure 2: Casing pressure on the child well identifies the Frac-Hit from the child well [6].



550

Progress Petrochem Sci       Copyright © Shahab D Mohaghegh

PPS.000620. 5(4).2023

Data from 964 frac stages of 79 child wells in Marcellus shale 
assets covering an area of 112 squared miles located in southern 
Pennsylvania was used in this study. These child wells have the 
change to Frac-Hit on 63 parent wells in this dataset. The effect 
of each child’s well frac stage (Frac-Hit/No Frac-Hit) was then 
evaluated on the parent well. Figure 2 is an example of the effect of 
11 frac stages of the child well on the parent well. Out of the 11 frac 
stages, 7 stages (frac stages 4, 5, 7, 8, 9, 10, and 11) have caused a 
Frac-Hit on the parent well. The dataset in this study shows 26% of 
the frac stages resulted in Frac-Hit while 74% of frac stages did not 
result in Frac-Hit. Moreover, 74 parameters from the combination 

of the child and the parent wells including well construction, 
reservoir characteristics, hydraulic fracturing implementation and 
completion were collected, filtered and used in the study. Table 
1 shows the list parameters gathered in the study. The distance 
between the child and parent well in this study ranges between 
688ft. to 2,525ft (Figure 3). The data was grouped in 10 distance 
bins with intervals of 92ft to visualize the distribution of the frac 
stages based on distance and percentage of Frac-Hit occurrence 
in each bin. Figure 4 shows the distribution of frac stages in each 
distance bin (above) and percentage of Frac-Hit within each 
distance interval (below).

Figure 3: Parameters collected from the child and parent wells [6].

Figure 4: Distribution of distance between the child and parent well frac stages and percentage of Frac-Hit in each 
group.
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Figure 4 clearly implies that even though the number of frac 
stages has increased by distance, the percentage of Frac-Hit reduces 
drastically. In other words, by increasing the distance between the 
child and the parent well, probability of Frac-Hit reduces. For a 
better visualization, the 10 distance intervals were lumped to three 
intervals (less than 1,500 ft., between 1,500 to 2,000ft., and more 
than 2,000ft.). As shown in Figure 5, when the distance between 
the child and parent well is less than 1,500ft., more than half of 
frac stages (52%) caused a Frac-Hit. However, when the distance 
between the child and parent well is between 1,500 to 2,000ft., 
only 30% of frac stages showed Frac-Hit and finally the Frac-Hit 
occurrence drops to 8% when the distance between the child and 

parent well exceeds 2,000ft. It can be concluded that by increasing 
the distance between the child and parent wells, the chance of 
Frac-Hit reduces as the hydrocarbon recovery from the shale asset. 
Furthermore, the increase in the distance does not fully eliminate 
the chance of Frac-Hit and remains 8% at distances above 2,000ft. 
in this study. There are two more parameters used by operating 
companies, “On Plane” and “Shielded”, besides the distance between 
the child and parent wells in decision-makings to avoid Frac-Hit. 
The “On Plane” parameter specifies if the parent well is within the 
frac stage of the child well. The “Shielded” identifies if the parent 
well is protected by another producing well located between the 
parent and the child well.

Figure 5: Frac-Hit occurrence as a function of distance between the child and the parent well.

Putting the three parameters of Distance, On Plane and Shielded 
together would create a flowchart to predict if Frac-Hit happens 
or not. Based on this flowchart, shown in Figure 6, if the distance 
between the child and parent well is greater than a cut-off distance 
(XCD), no Frac-Hit will be predicted. However, if the distance 
is below the cut-off distance, then “On Plane” and “Shielded” 
parameters should be checked and only if the stages are “On Plane” 
and “not Shielded”, Frac-Hit will be predicted. In other words, Frac-
Hit occurrence is predicted only under a specific scenario when the 
distance is below the cut-off, stages of the child and parent wells 
are “On Plane” and the parent well is “not Shielded” and any other 
possible scenario would predict no Frac-Hit. The flowchart can also 
be interpreted as a decision tree where the distance has the most 
importance in the decision-making and prediction (Frac-Hit or No 

Hit) and “On Plane” and “Shielded” status are the next orders of 
importance in the Frac-Hit occurrence prediction. The dataset was 
categorized into four groups based on their status of “On Plane” and 
“Shielded”. Figure 7 demonstrates this distribution and percentage 
of Frac-Hit occurrence in each category. Figure 7 clearly shows that 
the highest percentage of Frac-Hit (65.4%) occurred when parent 
wells were “On Plane” and not “Shielded” and the least percentage 
of Frac-Hit (3.5% and 5.1%) occurred when wells were not “On 
plane”. This actually aligns with the industry’s common practice 
that the highest chance of Fric-Hit occurrence is when the wells 
are “On Plane” and not “Shielded”. The problem arises when only 
65.4% of the stages had Frac-Hit when they were “On Plane” and 
not “Shielded” while based on Figure 6 flowchart it should show 
100% Frac-Hit!
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Figure 6: Frac-Hit prediction decision tree.

Figure 7: Frac-Hit occurrence distribution on the actual field data based on “On Plane” and “Shielded” parameters.

To evaluate the performance of the industry practice on the 
dataset, Figure 6 flowchart should be implemented on the data. 
Since the largest distance between the child and parent wells in 
the used dataset was 2,525ft., this distance was used as the cut-off 
distance (XCD). Choosing this cut-off distance would also provide 
the best possible performance for the common practice predictions. 
Figure 8 demonstrates the results of this implementation. According 
to Figure 8, 41% of frac stages (396 cases) were not “On Plane” and 
over all 16 cases out of 396 were misclassified as “No Hit” while 
they were actual Frac-Hits. In addition, there were 301 cases when 
wells were “On Plane” and not “Shielded”, 104 cases (34.5%) were 
misclassified as “No Hit”. Finally, in 267 cases when the wells were 
“On Plane” and “Shielded”, 47 cases were misclassified as Frac-Hit. 

In summary, 167 cases out of 964 cases (17.3%) were predicted 
wrong and the biggest contributor was when Frac-hit occurrence 
had the highest chance (“On Plane” and not “Shielded”). Figure 
9 shows a comparison between the actual data and industry’s 
common practice prediction. To evaluate the performance of 
classification problems like Frac-Hit occurrence, which is a binary 
classification problem, confusion matrix is used. Confusion matrix 
is a specific table layout for summarizing the performance of a 
classification problem that provides four different combinations 
of predicted and actual values. Calculating the confusion matrix 
provides a better idea of what the classification model gets right 
and what types of errors it makes. Figure 10 shows the breakdown 
of the confusion matrix for a binary classification.
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Figure 8: Industry practice prediction of Frac-Hit occurrence.

Figure 9: Comparison of Industry practice prediction of Frac-Hit with actual data.

Figure 10: Confusion matrix components.
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Confusion matrix table has a four main category layout:

A.	 True Negative: the predictive model classifies a negative 
outcome correctly. 

B.	 False Positive: the predictive model classifies a negative 
outcome wrong, also called “Error Type I”.

C.	 False Negative: the predictive model classifies a positive 
outcome wrong, also called “Error Type II”.

D.	 True Positive: the predictive model classifies a positive 
outcome correctly.

The four main categories of confusion matrix also have some 
derivatives, which are used as metrics of model performance:

a)	 Recall: the ratio of Ture Positive to all positive conditions, 
also known as True Positive Rate (TPR)

b)	 Precision: the ratio of Ture Positive to all positive 
predicted outcomes. 

c)	 Negative Predictive Value (NPV: the ratio of True Negative 
to all negative predicted outcomes.

d)	 Specificity: the ratio of Ture Negative to all negative 

conditions, known as True Negative Rate (TNR)

e)	 Accuracy: the ratio of total correct predictions to all the 
cases.

f)	 F1-Score: the harmonic average of Recall and Precision.

Among these six-performance metrics, Recall, Precision, 
Accuracy and F1-Score are the most popular ones. Recall is usually 
important when False Positives burden lower cost than False 
Negatives and objective is to lower the False Negatives. Precision is 
important when focus is on the True Positives. Accuracy is important 
when the dataset is symmetric in outcome classes and F1-Score is 
used when dataset is not symmetric. The confusion matrix was 
calculated for the industry practice model and presented in Figure 
11. Figure 11 clearly shows that 104 cases of the False Positive 
cases, when the industry model predicts Frac-Hit while Frac-Hit 
did not happen in reality, has resulted in a low Precision value of 
65%. The cost of low Precision can be reflected in the hydrocarbon 
recovery factor. On the other hand, 63 cases of False Negatives, 
when the industry model predicts no Frac-Hit while Frac-Hit occurs 
in reality, has resulted in a low Recall value of 75%. The cost of low 
Recall can be reflected in the increase of water production and the 
decrease of hydrocarbon production after Frac-Hit.

Figure 11: Confusion matrix for industry practice model.

An ideal confusion matrix would have zero False Positive and 
zero False Negative cases resulting in Recall and Precision to be 
100%. However, in practice there is always a trade-off between the 
four categories of True Negative, True Positive, False Negative and 
False Positive. If the objective is to minimize the False Positives, i.e., 
to increase the recovery factor, then Precision should be optimized. 
However, if the objective is to minimize the False Negatives, i.e., 
predicting Frac-Hit occurrence correctly, then Recall should be 
optimized. In this study, we tried to minimize both False Positives 
and False Negatives simultaneously (Increase both Recall and 
Precision simultaneously). To do so, F1-score should be optimized 
as the dataset was imbalanced with ratio of almost 1 to 3 between 
classes of Frac-Hit and no Frac-Hit. Snapshot modeling of Frac-
Hits, which is a purely fact-based AI/ML technique incorporates 
many other field measurements besides distance, “On Plane” 

and “Shielded” parameters. These parameters include well 
characteristics, reservoir characteristics, completion and hydraulic 
fracturing design of both child and parent wells, as shown in Figure 
3.

For the snapshot modeling of Frac-Hits, Artificial Neural 
Networks (ANN) model was implemented. For that, 964 frac 
stages in the dataset were divided into three categories of training, 
calibration and blind validation with proportions of 60%, 15% and 
25%. The category of each frac stage was determined randomly. 
The training dataset was used for training the ANN, the calibration 
dataset also known as validation dataset was used for unbiased 
validation of the training dataset during the training process. The 
blind validation dataset, also known as test set, was the dataset that 
has not been used in the training process and provides an unbiased 
validation of the final model. In addition to hyperparameter tuning, 
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a 5-fold cross-validation was also implemented during the training 
process to achieve a robust model. The architecture and details of 
the ANN after hyperparameter tuning are shown in Table 1. After 
training the ANN, the shale analytics model was used to predict 
the training and the blind validation datasets. Then the matrix 
confusion of each dataset was calculated. To have a fair comparison 

between the industry practice model and shale analytics one, 
the confusion matrix was also calculated for training and blind 
datasets based on the industry practice model. Figure 12 shows the 
comparison between industry practice and shale analytics models 
for the training datasets.

Table 1: ANN architecture.

ANN type Multi-layer Perception

Number of hidden layers 3

Number of neurons in each hidden layer 200, 200, 100

Activation function RELU (hidden layers), Sigmoid (output layer)

Optimizer Adam

Optimizing criteria Maximizing F1-Score

Figure 12 shows that Recall has improved from 75% to 84%, 
Precision has improved from 64% to 84%, and subsequently the 
Accuracy and F1-score have increased from 82% to 91% and 69% 
to 84%, respectively. Overall, the False Positive errors have reduced 
from 82 to 31 cases (72% less error) and False Negative errors have 
reduced from 49 to 31 cases (27% less error). Similar approach 
was implemented on the blind validation dataset and the confusion 

matrix for both techniques of industry and shale analytics were 
calculated and compared. As Figure 13 shows, similar to training 
dataset, all metrics of Recall, Precision, Accuracy and F1-score 
have significantly improved in the shale analytics. The overall 
comparison of the actual data with industry practice and shale 
model in Frac-Hit prediction using parameters of “On Plane” and 
“Shielded” parameters are shown in Figure 14.

Figure 12: Comparison between confusion matrices of industry practice and shale analytics models on the training 
dataset.

Figure 13: Comparison between confusion matrices of industry practice and shale analytics models on the blind 
validation dataset.
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Figure 14: Comparison of actual Frac-Hits vs. the industry practice and shale analytics techniques.

Conclusion
Artificial intelligence and Machine Learning is pure data-

driven, fact-based technology without assumptions, simplifications 
and interpretations. This technology can provide more realistic and 
accurate results in hydrocarbon recovery in shale assets.
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