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Background
Over the years, continuous innovative advancement has been observed in the field of 

polymer technology. Lot many researchers have gained a wide attraction in recent years 
to characterized, designed, and fabricates number of novel polymer, biopolymer and nano 
biopolymer sophisticated materials mainly due to the benefits related to environmental 
sustainability which is need of hours in the green planet earth. The current review article 
highlights recent development and innovations in the area of polymer, biopolymer and 
nano biopolymer composites, such as synthesis, characterization, and application of such 
sophisticated novel composites in the polymer and related industries. Living organisms 
produced nano biopolymers (nanocellulose, nano starch, nano chitin, nano silk, etc.) and 
microbial nano biopolymers, having received widely scientific and engineering interests in 
recent decades due to their extensive availability, sustainability as well as biocompatibility 
and biodegradability. Compare with petroleum-based polymers, biopolymers are sustainable 
and biodegradable. Chemical, mechanical, and microbial methods are generally used to 
fabricate nano biopolymers from nature. Nano biopolymers can be processed via solution 
casting, vacuum filtration and freeze drying [1-4] while most microbial nano biopolymers, 
polyesters can be processed using polymer processing equipment, like extruder, injection 
molding, etc. [5]. Nanopolymers have been synthesized using various methods. Eco-friendly, 
fully biodegradable microstructured polymeric nanoparticles systems are widely in demand, 
as biomedicine specially in tissue engineering and regenerative medicine [6-9], targeted 
controlled delivery to particular organs/tissues, carriers of DNA in gene therapy and in their 
ability to deliver proteins, peptides and genes through an oral route of administration [10,11], 
biocompatibility with tissue and cells [12,13], to improve bioavailability, and bioactivity of 
various pharmaceutically active compound used in various ailments [14,15] biodegradable 
and smart packaging [16-19], environment protection such as global spill accidents, water 
quality [20,21] etc. To improve the current growth of the bio-economy and green chemistry, 
the use of bio-derived polymers and chemicals could also be considered [22].

In recent years, the use of polymeric nanofibers has gained great importance in 
biomedical and biotechnological applications such as tissue engineering, controlled release 
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Abstract
In this review, we have tried to highlight some nano polymers innovations in the recent time frame. We 
have mentioned various approaches for novel nano polymeric materials and their new age applications 
in the context of industries, biomedical research and environmental sustainability. 
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systems, wound dressings, medical implants, composites for dental 
applications and biosensors. The electrospinning method is the 
most preferred production method because it allows the production 
of nanofibers with different materials Polymeric nanofibers are 
promising drug delivery systems, especially in terms of their 
applications as controlled release systems to achieve localized 
drug delivery [23]. Biologically active dendrimers can be useful for 
combination therapy for conjugated drugs, and for improvement 
of the therapeutic index, and ‘personalized nanomedicine’ [24-
27]. The delivery of sncRNAs molecules by biodegradable, 
biocompatible and nontoxic biopolymers including chitosan, 
cyclodextrins, poly-l-lysine, dextran, poly (lactic co-glycolic acid), 
polyglutamic acid, hyaluronic acid and gelatin [28]. Nanocellulose 
polymers have played a vital role in biomedical applications and 
biomedical engineering as a whole and made possible with 3D bio-
ink printing. This achievement has made it easy for skin grafting, 
organ transplants and cancer screening and treatment. The many 
available thermoplastics are being replaced with cellulose from 
wood, pulp and plants, some of the cellulose polymers covered in 
this paper are Nanocellulose (CNF), nanofibers (CNC), Bacterial 
cellulose and many more cellulose polymers. 3D structures 
of numerous advantages like flexibility, improved mechanical 
strength, controlled biodegradability and user-specific have made 
it possible to transplant, regenerate and cushion any loopholes 
in the medical field. The materials are also unique. Its ability to 
produce and regenerate tissues and organ structures has opened 
further studies in this field [29-43]. 

Fabrication and Characterization of Eco-Friendly 
Microstructured Polymeric Nanoparticles Systems 
in the Recent Times

Kustiyah et al. [44] made an attempt to create transparent 
conductive high cellulose-based paper by a facile process using 
chemicals and sonication methods to obtain cellulose nanofibril 
from sorghum stems waste which are eco-friendly and can be 
used as a substitute for glass coating in the display industry. 
Meindrawan et al. [45] explored an edible coating based polymeric 
bio nanocomposite of gelatin and ZnO nanoparticles to improve 
the quality of the broiler chicken fillet during storage. Saragih et 
al. [46] studies, cellulose nanofiber has been isolated using the 
steam explosion method from lignin and hemicellulose of pseudo-
stem of abaca (Musa textilis). Oktaviani et al. [47] synthesized the 
bacterial cellulose-co-polyacrylamide by radiation-induced graft 
polymerization using gamma rays with the simultaneous technique. 
Nano biopolymers and nanomaterials such as SFNPs, SFNCs, POSS, 
ZCPs, and nickel hydroxide nanosheet have shown their roles in NF-
transport. There are many different techniques for the fabrication 
of nanoparticle-containing NF membranes, including electrospun 
membranes, nanosheet membranes, layer by layer assembly 
and hollow fiber spinning which are used in combination with 
these techniques [48]. Novel nano polymers has many forensic 
applications such as drug detection, toxicology, fingerprints, 
document examination, DNA analysis, sensors, and trackers have 
benefitted by utilizing these novel polymers. It integrates the use of 

nanoparticles, quantum dots, nanochips, nanotubes, nanofibers, and 
nanorods to multiply the results of tracing, detection, and analysis 
in forensic investigation. Nanomaterials are widely utilized for 
commercial purposes such as fabrics, cosmetics, sunscreen, dental 
fillers, semiconductors, smart packaging materials, actuators, and 
target nutrient and drug delivery, 3D nano systems, self-assembled 
structures, and more complex heterogeneous nanostructures will 
be seen in the near future [49]. Advancements in the material 
science have emerged as an extraordinary area that combines 
various analytical techniques like TEM, SEM, XRD, AFM, NMR, FTIR, 
LC/MS, GC/MS, MS/MS to detect and analyze nano evidence [50].

At present nano polymer degradation possesses a great 
challenge of high societal importance for which an experimental 
lacking exists. A closed graphene liquid cells in combination with 
fluorescent dyes can be used to detect the release of particular 
contents, with efficient screening of events, utilizing atomic force 
microscopy followed by electron microscopy. Such approaches can 
be used including chemical and physical triggers for the controlled 
break down of polymeric materials into primary building blocks to 
facilitate the transition towards a circular economy [51,52]. Qiang et 
al. [53] prepared a novel polymeric precursor with Zr-C-Si-N main 
chain structure was synthesized through a two-step method which 
shows an excellent moldable property, oxygen-free compositions 
and high Zr content of PZCS make it an ideal precursor for the 
preparation of UHTCs matrixes and fibers. Zhang X, et al. [54] were 
successfully prepared high-temperature resistant polycarbonates 
with different BHPF contents by a melt-polycondensation method 
with BPA, DPC, and BHPF. This discovery has tremendous application 
potential in high temperature resistant plastic industry. Zhang et al. 
[55] worked on bio-based N-heterocyclic poly (aryl ether ketone) 
with a high biomass content and superior properties prepared from 
two derivatives of guaiacol and 2,5-furandicarboxylic acid. Curcuma 
longa (Turmeric) embedded super macroporous cryogel discs used 
as a natural ligand for hazardous metal ions removal from aqueous 
and synthetic wastewater [56]. Godiya et al. [57] recently reported 
the cost-effective techniques for removal of bisphenol-A, with 
reasonably advanced efficiencies to address existing problems of 
bisphenol A-contaminated wastewater treatment.

Zhai et al. [58] rapidly prepared silica gel composite corks 
(Cosiae-SP and Cosiae-VP) by immersing corks of different tree 
species in silicone mucilage via the respiration impregnation 
method. Silica aerogel was immobilized in the cork cells to form a 
layered network structure with holes. Kalali et al. [59] developed a 
novel Wood Polymer Composite (WPC) flame retardant system using 
APP and Phytic Acid-Modified Layered Double Hydroxides (Ph-
LDH) as raw materials. Cinausero et al. [60] studied the synergistic 
effect of nano-oxide and Ammonium Polyphosphate (APP) with 
polymers such as Polystyrene (PS) and Polymethylmethacrylate 
(PMMA). Manfredi’s group [61] fabricated some composites with 
mod-acrylic acid and UPR as substrates, and jute, flax, sisal and 
glass as reinforcements, and compared the FR of these composites. 
Laoutid et al. [62] summarized the flame retardant properties of 
polymer composites obtained by adding nano-fillers to a polymer 
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matrix and accounted for the flame-retardant mechanisms of 
various nano-fillers. Baysal’s group [63] prepared vinyl monomer–
wood composites by treating sapwood with a mixture of 1 wt% 
borax and boric acid (1:1). The vinyl monomer–wood composites 
were prepared by using styrene, methyl methacrylate and a 
mixture of styrene and methyl methacrylate (50:50). The FR of 
the composite was evaluated using the combustion weight loss 
method. Fernandes et al. [64] introduced decabromodiphenyl 
combined with antimony trioxide as an additive to UPR to improve 
the FR of Sisal–Polyester (SSP) composites. Jones et al. [65] 
compared extruded polystyrene foam with rice husk/mycelium 
biological plate and found that the biomass system is expected to 
have better flame retardancy due to the presence of carbonaceous 
coke and embedded silica in the combustion process [65, 66]. For 
myoglobin recognition from aqueous solutions and human plasma 
with high adsorption capacity and selectivity in binding capacity 
the molecular imprinted supermacroporous cryogels technique 
can be used [67]. Functional 3-D nanofibrous scaffolds produced 
by electrospinning have immense prospective in a wide spectrum 
of biomedical research, viz. drug/gene delivery, tissue engineering 
and wound dressing [68]. Tolnaftate and tolnaftate- graphene 
composite loaded polyacrylate nanofibers can be potential used as 
dressing materials/scaffolds for efficient care of dermatophytosis 
[69,70]. Ying et al. [71] also studied the preparation of Straw 
Magnesium Cement (SMC) from rice straw, another bio-based 
isolation material.

Future Outlook
The integration and development of lignin processing, 

deconstruction, and synthetic polymer chemistry could prove 
crucial to yield commercial, biobased products such as adhesives, 
packaging plastics, biomedical devices, and stimuli-responsive 
materials [64] Fabrication and characterization of eco-friendly 
microstructured polymeric nanoparticles systems becomes 
more demanding and complex. It finds applications in various 
field including Environment and biomedical research. A viable 
and promising strategy for the use of biodegradable polymeric 
nanoparticulate drug delivery systems in biopharmaceutical 
industry and green chemistry with ecofriendly biological entities 
can help in minimizing harmful impacts on human health. Polymeric 
Nanoparticulate Drug Delivery Systems (PNDDS) can increase the 
bioavailability, solubility and permeability of many potent drugs 
and also reduce the drug dosage frequency. PNDDS can be used to 
exploit for many biological drugs that have poor aqueous solubility, 
permeability and less bioavailability in future to overcome these 
problems.
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